Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(36): eadf3041, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37672592

RESUMO

In eukaryotes, the posttranslational modifier ubiquitin is used to regulate the amounts, interactions, or activities of proteins in diverse pathways and signaling networks. Its effects are mediated by monoubiquitin or polyubiquitin chains of varying geometries. We describe the design, validation, and application of a series of avidity-based probes against the ubiquitylated forms of the DNA replication clamp, proliferating cell nuclear antigen (PCNA), in budding yeast. Directed against total ubiquitylated PCNA or specifically K63-polyubiquitylated PCNA, the probes are tunable in their activities and can be used either as biosensors or as inhibitors of the PCNA-dependent DNA damage bypass pathway. Used in live cells, the probes revealed the timing of PCNA ubiquitylation during damage bypass and a particular susceptibility of the ribosomal DNA locus to the activation of the pathway. Our approach is applicable to a wide range of ubiquitin-conjugated proteins, thus representing a generalizable strategy for the design of biosensors for specific (poly)ubiquitylated forms of individual substrates.


Assuntos
Dano ao DNA , Replicação do DNA , Antígeno Nuclear de Célula em Proliferação , DNA Ribossômico , Ubiquitina
2.
Nucleic Acids Res ; 51(7): 3327-3340, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36951106

RESUMO

Homochirality of the cellular proteome is attributed to the L-chiral bias of the translation apparatus. The chiral specificity of enzymes was elegantly explained using the 'four-location' model by Koshland two decades ago. In accordance with the model, it was envisaged and noted that some aminoacyl-tRNA synthetases (aaRS) that charge larger amino acids are porous to D-amino acids. However, a recent study showed that alanyl-tRNA synthetase (AlaRS) can mischarge D-alanine and that its editing domain, but not the universally present D-aminoacyl-tRNA deacylase (DTD), is responsible for correcting the chirality-based error. Here, using in vitro and in vivo data coupled with structural analysis, we show that AlaRS catalytic site is a strict D-chiral rejection system and therefore does not activate D-alanine. It obviates the need for AlaRS editing domain to be active against D-Ala-tRNAAla and we show that it is indeed the case as it only corrects L-serine and glycine mischarging. We further provide direct biochemical evidence showing activity of DTD on smaller D-aa-tRNAs that corroborates with the L-chiral rejection mode of action proposed earlier. Overall, while removing anomalies in the fundamental recognition mechanisms, the current study further substantiates how chiral fidelity is perpetuated during protein biosynthesis.


Assuntos
Alanina-tRNA Ligase , Biossíntese de Proteínas , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética , RNA de Transferência/metabolismo , Animais
3.
Sci Adv ; 8(2): eabj7307, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35020439

RESUMO

Mitochondria emerged through an endosymbiotic event involving a proteobacterium and an archaeal host. However, the process of optimization of cellular processes required for the successful evolution and survival of mitochondria, which integrates components from two evolutionarily distinct ancestors as well as novel eukaryotic elements, is not well understood. We identify two key switches in the translational machinery­one in the discriminator recognition code of a chiral proofreader DTD [d-aminoacyl­transfer RNA (tRNA) deacylase] and the other in mitochondrial tRNAGly­that enable the compatibility between disparate elements essential for survival. Notably, the mito-tRNAGly discriminator element is the only one to switch from pyrimidine to purine during the bacteria-to-mitochondria transition. We capture this code transition in the Jakobida, an early diverging eukaryotic clade bearing the most bacterial-like mito-genome, wherein both discriminator elements are present. This study underscores the need to explore the fundamental integration strategies critical for mitochondrial and eukaryotic evolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...